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ABSTRACT
This paper introduces the adaptive generation of orthogonal rational approximations (AGORA) method for rational function 
approximation of measured or simulated microwave network parameters. The output of AGORA is a state-space model or a 
rational function model that is representative of the input data. The generated model can then be used to interpolate the data or 
to evaluate the data quality. A typical application is the time-domain signal and power integrity analysis in circuit simulations 
using the generated model from measured or simulated interconnnects and power distribution networks. AGORA allows esti-
mating the model order for a given error tolerance and does not require any initial estimates or adjustment of hyperparameters.

1   |   Introduction

Signal and power integrity analysis often involves time-domain 
waveforms such as eye diagrams or power supply voltage noise 
that are simulated in a circuit solver. An important aspect is 
the integration of interconnect and power distribution network 
models in circuit solvers. These components usually do not 
have closed-form equivalent circuit models at the package and 
board levels. Their frequency-response data can be obtained 
from electromagnetic solvers or high-frequency measurements. 
Integration of this frequency-response data into a circuit simula-
tor can be achieved by approximating it with a rational function 
[1]. Methods available to generate rational function approxima-
tions from tabulated simulated or measured data include the 
widely popular vector fitting (VF) [2], Loewner framework [3], 
Sanathanan–Koerner (SK) iteration [4], RKFIT [5], ORA [6], and 
AAA (adaptive Antoulas–Anderson) [7–9].

The modeling methods outlined earlier continue to be used and de-
veloped to analyze a variety of high frequency systems as shown in 
Figure 1. For example, VF was used to model transceivers by using 
feedforward neural networks [11], to assist with postproduction 
tuning of coupled-resonator networks [12], to simplify the model of 

a power delivery network which is comprised of fully incorporated 
voltage regulators [13], and to create a model for a noisy package 
structure [14]. The design of a PCB cavity and locations of vias was 
expedited by using the parameterized Loewner matrix framework 
[15]. The speed of different CPUs in calculating large VF models 
was examined, towards handling increasingly complex represen-
tations of systems in examining signal and power integrity issues 
[16]. A microring resonator photonic filter was also modeled and 
tested by using complex vector fitting (CVF) [17].

The output of adaptive generation of orthogonal rational approx-
imation (AGORA) is the rational function r(s) = b(s)∕a(s) where 
s is the Laplace variable, a(s) is the denominator polynomial, 
and b(s) is the numerator polynomial, which becomes a poly-
nomial matrix for multi-port data. The input is the measured 
or simulated matrix data Hi, typically provided at the real fre-
quency points si = j�i. The rational function r(s) represents a 
blackbox macromodel that characterizes the component, where 
the roots of the numerator and denominator are denoted as zeros 
and poles, respectively [18].

A primary difficulty in rational function approximation is that it 
requires the nonlinear least-squares solution of b(s)∕a(s) = H. The 
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nonlinearity comes from the unknown denominator polynomial 
a(s). Available algorithms for rational function approximation dif-
fer in how they iteratively solve this nonlinear problem. The accu-
racy of the straightforward linearized solution of b(s) = Ha(s) is, 
in general, unsatisfactory. Commonly used algorithms for rational 
approximation assume a known model order with the notable ex-
ception of AAA, which increments the model order at each itera-
tion until convergence. AAA is however an interpolatory method; 
hence, it is most suitable for noise-free data and model orders close 
to the actual physical system. These properties of AAA present 
themselves as critical shortcomings for modeling of distributed 
networks including delay, such as transmission lines, which inher-
ently requires an approximate lower model order than the physical 
system. An alternative is VF, which has been applied to generate 
rational approximations in a wide range of applications. Due to 
its noninterpolatory nature, it is in general more accurate than 
AAA for a least-squares approximation of noisy scientific data. 
However, VF is not adaptive, therefore computationally inefficient 
for estimation of model order. The proposed AGORA algorithm 
overcomes the shortcomings of both approaches. AGORA is both 
noninterpolatory and adaptive. Using the monomial basis for r(s) 
is, of course, ill-conditioned for large orders. AGORA is based on 
the recent data-centered orthogonal rational basis in ORA [6], 
which is well-conditioned for larger orders as well.

There are several key differences between the introduced 
AGORA algorithm and the ORA algorithm [6]. First, in ORA, 
the orders of the numerator and denominator are set by the user. 
In AGORA, the model order does not need to be known. It is 
adaptively incremented until convergence. Next, ORA is based 
on SK iterations, which are time consuming, whereas AGORA 
does not need them. To solve the nonlinear least-squares prob-
lem, AGORA's approach of building up the model adaptively is 
unique and fundamentally different than existing approaches. 
The only existing adaptive approach is the AAA algorithm, 
which is however interpolatory and cannot provide a least-
squares solutions at the support points. AGORA aims to solve 
the nonlinear least squares problem with no interpolation.

2   |   Current Approaches for Rational Function 
Approximation

There are two major approaches for rational function 
approximation:

1.	 SK iteration: Various implementations include RKFIT, 
stabilized SK, ORA, and the popular VF algorithms. SK 

iteration is known to be accurate for approximating data 
with noise. The model order is fixed.

2.	 AAA: The barycentric basis of AAA comes from the 
Loewner framework. AAA is known to be accurate for 
closed-form functions or data without noise. The adaptive 
nature of AAA allows to estimate the model order.

SK-based methods, AAA, and AGORA all use different bases. 
However, more importantly, the process for solving the nonlin-
ear least squares problem is different among them. They are all 
based on an iteratively updated polynomial â(s) as 

where the linearized problem now seeks the least-squares solution 
of b(s)∕â(s) ≈ Ha(s)∕â(s). The presence of â(s) does not change 
the nonlinear problem; however, it has a profound effect on the ac-
curacy of the linearized solution. The choice of the iteration poly-
nomial â(s) dictates the convergence of the linearized problem to 
the solution of the actual non-linear problem b(s)∕a(s) ≈ H. This 
choice is the main difference between the three approaches.

In the following, we compare them using the partial fractions 
basis, as this is common to both VF and AAA. We also focus on 
the denominator a(s)∕â(s), which is the main departure point 
among the three methods.

2.1   |   VF

In SK iteration methods, such as VF, typical initial choice for ̂a(s) is 
a polynomial with slightly damped complex roots. The monomial 
basis is of course not suitable for large-order approximations and 
replaced with a better-conditioned basis such as a partial fraction 
(VF) or an orthogonal rational basis (RKFIT or ORA [6]). In VF, 
the denominator of r(s) is expressed in a partial-fractions basis as 

where p̂i are the roots of ̂a(s). The solution of the linearized prob-
lem yields an updated denominator a(s). In the next iteration, 
this updated denominator a(s) is used in place of â(s) and a new 
least squares problem is solved. As â(s) approaches a(s), the lin-
earized problem b(s)∕â(s) ≈ Ha(s)∕â(s) tends to get closer to the 
solution of the actual nonlinear problem b(s)∕a(s) ≈ H. Note that 
a(s) and â(s) have the same polynomial degree n. Therefore, the 

(1)r(s) =
b(s)∕â(s)

a(s)∕â(s)
,

(2)
a(s)

â(s)
= k0 +

n
∑

i=1

ki
s − p̂i

,

FIGURE 1    |    Time-domain analysis for a passive system, such as this substrate integrated waveguide [10], may use a black-box macromodel.
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model order n remains the same at each iteration. This is a pri-
mary disadvantage of SK iteration-based methods such as VF, as 
n needs to be known in advance.

2.2   |   AAA

The AAA algorithm is based on choosing roots of â(s) from a 
subset of the l frequency points as p̂i = ŝi, resulting in the de-
nominator of 

This form implies that the polynomial degree of a(s) is one 
less than that of â(s). This is however not a problem, as AAA 
does not use the updated denominator a(s) in place of â(s) at 
the next iteration. AAA is based on the property of barycen-
tric functions as in (1) to yield interpolatory results r(p̂i) = Ĥi, 
where Ĥi is the data provided at frequency p̂i. At each itera-
tion, the frequency point with the maximum deviation is se-
lected as the next node p̂n+1, and the iteration continues until 
a certain error tolerance is reached. This adaptive nature of 
AAA allows to estimate the model order, as each iteration in-
crements the model order by one. This is an important feature, 
as a higher-than-necessary model order can result in spurious 
poles (poles with very small residues), affecting the model's 
accuracy.

2.3   |   The Proposed Adaptive Generation 
Algorithm

The denominator in AAA has no constant or linear terms, 
whereas SK has the linear term k0. Consider now the third op-
tion of adding a linear term sk∞ to the denominator: 

The choice of the denominator in (4) is the main departure point 
for the proposed AGORA algorithm. Unlike SK iteration, the 
order n is not assumed to be known and can now be estimated in 
an adaptive manner similar to AAA. However, the iterations are 
aimed at achieving a(s) = â(s), similar to SK. The main feature 
of AGORA is that the order of a(s) is one more than the order of 
â(s), due to the addition of the linear term. Hence, each iteration 
increments the model order n by one. In contrast, SK iteration 
maintains the same model order over iterations.

3   |   AGORA

The presentation of the denominator in  (4) using a partial-
fractions basis is for illustration purposes only. Even though it is a 
possible option, we do not use this basis in this paper. AGORA in-
stead uses the orthogonal rational approximation (ORA) basis [6]: 

In ORA, the dividing polynomial â(s) is embedded into the or-
thogonal rational bases oi(s), which are not explicitly calculated, 
following a similar approach as in the Vandermonde with Arnoldi 
[19] method for generating polynomial approximations. ORA is 
data driven, in the sense that it allows calculating oi(s) at arbitrary 
frequency points si, without providing an explicit expression for 
oi(s). It also does not require the starting poles or an expression 
of â(s) directly; only the values of this polynomial at the given 
frequency points is needed. This property of ORA makes it the 
most convenient candidate for experimenting with the difference 
in the degrees of a(s) and â(s) for adaptive generation, as it does 
not require a major modification of an existing algorithm.

ORA is based on two methods:

•	 numfit: This method creates an orthogonal basis, that is, a 
matrix containing the values of oi(s) at the given frequency 
points, using the Arnoldi iteration. The basis is created 
starting with a vector that incorporates the division by â(s), 
which extends the Vandermonde with Arnoldi [19] method 
from calculating polynomial approximations to rational ap-
proximations [6, 20]. This methods serves the same purpose 
as the residue extraction stage of VF.

•	 denfit: This method solves the linearized least-squares 
problem b(s)∕â(s) ≈ Ha(s)∕â(s) to calculate a(s). Both 
b(s)∕â(s) and a(s)∕â(s) are expressed using the orthogonal 
rational basis in (5). This method serves the same purpose 
as the pole relocation stage of VF.

VF makes use of efficient state-space algorithms to generate large 
order models. To modify the VF basis in (2) into the form in (4) is 
complicated, as it requires switching from the proper state-space 
model in VF to a more general descriptor model, while ensuring 
the algorithms are applicable for large-order models. For exam-
ple, the zeros of  (3) are needed to find the poles obtained from 
AAA. The core AAA algorithm [7] extracts these poles by solv-
ing a generalized eigenvalue problem. An alternative method [9] 
is available that is numerically better conditioned without a fre-
quency scaling. VF extracts the roots of a(s) from the poles of the 

(3)
a(s)

â(s)
=

n
∑

i=1

ki
s − p̂i

.

(4)a(s)

â(s)
= k0 + sk∞ +

n−1
∑

i=1

ki
s − p̂i

(5)
a(s)

â(s)
=

n
∑

i=0

aioi(s).
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inverse state-space representation of (2). The partial fraction ex-
pansion in (4), on the other hand, is a descriptor model. Finding 
the zeros of (4) therefore requires a numerically well-conditioned 
method that is not immediately available from the established 
pole-extraction processes in AAA or VF. This is however easily 
accomplished using the orthogonal rational approximation (ORA) 
[6]. ORA is a data-centric approach and does not require the poles 
of â(s). The value of â(si) at the frequency points si is all that is 
needed. Hence, changing the order of a(s) with respect to â(s) is 
straightforward in ORA. In AGORA, we therefore make use of 
the underlying ORA algorithms: denfit and numfit, where 
their Matlab implementations are given in [6]. The proposed 
AGORA algorithm is implemented in the Matlab function agora 
as shown in Figure A1. The pseudocode is shown in Algorithm 1.

The accuracy of the linearized problem b(s)∕â(s) = Ha(s)∕â(s) 
to solve the actual nonlinear problem b(s)∕a(s) = H depends on 
the convergence of â(s) to a(s). In AGORA, increasing the model 
order in each step is meant to provide a better approximation of 
â(s) to a(s). This heuristic goal is the same as in SK iteration or 
VF. AAA, on the other hand, relies on the interpolatory nature 
of the barycentric form. Obviously, convergence of â(s) to a(s) is 
not expected in AAA, as the roots of a(s) will in general not be a 
subset of the frequency points. On the other hand, each iteration 
increases the number of frequency points where interpolation 
occurs, with the goal of reaching a better least squares approxi-
mation overall. This interpolatory nature of AAA makes it sub-
optimal for least squares approximation of data including noise. 
The new AGORA approach therefore promises to incorporate 
the powerful features of both VF and AAA as shown in Table 1.

4   |   Accuracy of AGORA

We provide several examples to compare the performance of 
AGORA with the rationalfit and rational MATLAB 
2024a packages. Lower-triangular S-parameter values 
were used. The functions rationalfit and rational 
are based on VF and AAA, respectively. They are however 
proprietary implementations, and may differ from the origi-
nal algorithms. The function rational, for example, ensures 

TABLE 1    |    Comparison of vector fitting (VF), adaptive Antoulas–
Anderson (AAA), and the proposed AGORA approaches.

Method Model order Noninterpolatory

VF (i.e., SK iteration) Fixed Yes

AAA Adaptive No

AGORA Adaptive Yes

FIGURE 2    |    Example 1: Noisy stripline data measured at 5001 frequency points was fitted using AGORA (a) Fitting results. (b) rational failed 
to generate models with more than 40 poles.

FIGURE 3    |    Example 2: Simulated cavity resonator data at 10 ports with 600 frequency points. (a) Fitting results. (b) AGORA had a significantly 
lower RMS error when compared to rationalfit and rational at higher orders.
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5 of 9

conjugate symmetry and stability of the poles, which are not 
true for the core AAA algorithm. We leave the number of 
SK iterations in rationalfit at its default settings of be-
tween 4 and 12. In the following study, the stability of poles 
was enforced in all the methods, including AGORA. Passivity 
can be another critical property. AGORA can be enhanced to 
generate passive models with the use of PASSOS [21, 22], which 
is based on a sum-of-squares rational function representation.

The two-port scattering parameter data from a stripline, which 
were measured from 100 MHz to 110 GHz on a vector network an-
alyzer, were modeled with up to 50 poles, as depicted in Figure 2a. 
As shown in Figure 2b, AAA failed to generate models with more 

than 40 poles. The approximation by AGORA had lower RMS 
error than that of rationalfit and rational for high orders.

A second example, shown in Figure 3a,b, depicts the fit on scat-
tering parameters from a cavity resonator resulting from a full-
wave simulation using Sonnet with ten ports. In a comparison 
of models with up to 100 poles, Figure 3b shows that those with 
more than 85 poles had significantly lower RMS error when con-
structed with AGORA than with rationalfit or rational.

The third example uses the measured data from a four-port 
common-mode filter design. The fit is shown in Figure  4a. 
Figure 4b shows that the fit generated by AGORA had similar error 

FIGURE 4    |    Example 3: Resulting fit on data from a four-port common-mode filter design from [10]. (a) Fitting results. (b) AGORA and ratio-
nalfit generated a fit to the function which had lower relative error than that of rational for higher numbers of poles.

FIGURE 5    |    Example 4: Resulting fit on the data from the finite-difference method simulation of a cavity resonator. (a) Fitting results. (b) AAA 
failed to generate models with more than 80 poles.

FIGURE 6    |    Example 5:The simulated data from the pictured substrate integrated waveguide (SIW) [23, 24] was used for this example.
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as in rationalfit. rational was not able to generate models 
at certain orders and resulted in higher error for high orders.

For the fourth example, the simulated data using the finite-
difference method from a two-port cavity resonator were inves-
tigated as shown in Figure  5a. Figure  5b shows that AGORA 
produced a fit with lower relative error than both rational 
and rationalfit, while rational failed to generate models 
with more than 80 poles.

For the fifth example, a two-port Substrate Integrated Waveguide 
(SIW) was simulated in Matlab by following the steps in [23]. 
1000 frequency points were measured between 100 MHz and 
20 GHz. The operating frequency range of the design is 10–15 
GHz [24]. The SIW is shown in Figure 6. The fit of AG using 
62 poles is shown in Figure 7a. The ORA implementation used 
20 SK iterations. As shown in Figure 7b, the fit by AGORA had 
generally lower error than that of rationalfit.

5   |   Identifying the Correct Poles

If the order of the underlying system is known and the data is not 
noisy, it would be a desirable property for a rational function gen-
erator to extract the correct poles of the system. In this example, 

a 10-pole system from Example 8.3.3 in [25] was fit with ratio-
nalfit, rational, and AGORA. For this synthetic, one-port 
transfer function, the poles and residues are known. Therefore, 

FIGURE 7    |    Example 5: Fit of AG on a simulated two-port Substrate Integrated Waveguide (SIW). The model was created with 62 poles. (a) Fitting 
results. (b) The error of the fit by AG was lower than that of rational near 60 poles.

FIGURE 8    |    Example 6: A 10-pole synthetic transfer function from [25] was used to generate S-parameter data. Shown are the (a) magnitude and 
(b) the extracted poles from the data.

FIGURE 9    |    Extracted residues for Example 6 in Figure 8a.
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the ability of the algorithms to correctly determine the poles and 
residues by using 1000 frequency points was compared. The fit to 
the function is shown in Figure 8a. As shown in Figures 8b and 9, 
the poles and residues which were calculated by AGORA and VF 
were a good fit in comparison to the known values, whereas AAA 
was inaccurate in identifying a pole and several residues.

6   |   Appearance of Spurious Poles

If the dataset is fit with a rational function of an order higher 
than that of the underlying system, there will be an excess of 
poles. Poles with small residues are considered spurious [7]. It is 
optimal if these poles are not generated. The residues calculated 
for different numbers of poles were compared in Figure 10. The 
function has ten known poles. For more than 10 poles, residues 
that are orders of magnitude smaller than those of the known 
values are present. These are considered spurious. It can also be 
seen that there was no fit available for every order when using 

rational. AGORA helps to detect such spurious poles or over-
fitting by adaptively building the model.

7   |   Timing for Model Generation

In a typical setting, the user may not know the original model 
order. Therefore, if the user chooses VF, which requires SK iter-
ation, they may need to select different orders and calculate the 
outcome before determining if additional orders should be tested. 
Therefore, the time required to use VF would increase if the orig-
inal result was unsatisfactory. For a subsequent example, then, 
the cumulative time is defined as the total time which a function 
would require to fit models at all orders up to the given order.

As AGORA is adaptive, the time which it requires to increase in 
model order is expected to be lower than that of VF. Furthermore, 
it does not require SK iterations. By using the data in Example 2, 
the cumulative time required to fit the data were measured. As 
shown in Figure 11a, AGORA required less time per number of 
poles when compared to the rationalfit method. Figure 11b 
also shows how AGORA required less time per number of poles 
when fitting the simulated data from Example 5.

8   |   Discussion

A complete convergence analysis is not yet available for AGORA, 
SK iteration [5], or AAA [7]. The residual error does not mo-
notonously decrease with the number of poles. A theoretically 
better-studied method is the Levenberg–Marquardt approach 
that leads to the Whitfield estimator [26] for rational functions. 
Alternatively, fitting the derivative of the objective function in 
the instrumental variable approach aims to find the local min-
ima [27]. These approaches have however not found widespread 
use, as they are either considered to be slow [28, 29] or not a 
significant improvement over SK iteration [20]. The convergence 
of AGORA especially in the presence of noise requires further 
research. VF as an example may fail to locate the poles for high 
noise levels [30] due to the presence of spurious poles. For the 
synthetic-transfer function example discussed in this paper, 
both AGORA and rationalfit were able to identify the cor-
rect poles.

FIGURE 10    |    Example 6: Residues corresponding to spurious poles 
for orders higher than the model order appear due to overfitting.

FIGURE 11    |    Cumulative time from fitting (a) a simulated cavity resonator data set with no known poles or residues from Example 2 and (b) a 
simulated substrate integrated waveguide from Example 5.
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A commonly desired property for the rational function is that it 
should have real coefficients and stable poles. This is achieved in 
the current implementation by the underlying ORA algorithm. 
Passivity on the other hand is typically not preserved in rational 
approximation of passive microwave network parameters. It can 
be enforced if necessary as a postprocessing step by perturba-
tion of the residues, as commonly done in existing rational ap-
proximation approaches.

9   |   Conclusion

We presented a new AGORA approach to linearize the least 
squares problem and estimate the model order for rational func-
tion approximation. AGORA is an alternative to the widely 
popular VF and AAA algorithms to compute rational function 
approximations. Initial results are promising in generating 
fast and accurate rational approximations by the new AGORA 
approach.

Data Availability Statement

The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Appendix A

FIGURE A1    |    Matlab implementation of AGORA that uses numfit and denfit functions defined in [6].
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